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Flows of two-component mixtures with vapor condensation on cooled surfaces are analyzed by the methods of
molecular-kinetic theory. The mixture contains a noncondensable component whose average density remains
constant in the region under study. The influence of the gas on the process of recondensation of the vapor
and the interaction of the components of the mixture in the cases of equal and different molecular weights are
studied. The problems posed are investigated using the method of direct numerical solution of the kinetic
Boltzmann equation modified for the mixture of gases. Special emphasis is placed on compution of direct and
cross collision integrals.

Problems in solving which one must take into account the nonequilibrium of transfer processes are topical for
many situations of practical importance.

In a number of practical applications, one frequently has such regimes of flow in which the regularities of
flows of a continuous medium, on the one hand, and those of a free-molecular medium, on the other, cease to hold.

Under such conditions, intermolecular collisions turn out to be insufficient for the superposition of a large
number of random interactions to completely counterbalance their probabilistic character and to make it possible to use
the regularities of a continuous medium. At the same time, collisions between gas or vapor particles are rather frequent
and they cannot be disregarded, as in the case of a free-molecular regime of flow. Therefore, it is expedient to de-
scribe rarefied-gas flows at the level of the velocity-distribution function of molecules.

The problem of calculation of the parameters of gas or vapor flows is also complicated by the presence of at
least two components of the gas which interact with each other and by the phase transitions on cooled surfaces.

Correct investigation of such flows is possible by the methods of molecular-kinetic theory. The motion and
interaction of gas or vapor molecules are described based on the kinetic equation. In the present work, we use, as such
an equation, the traditional Boltzmann equation, which, for a two-component mixture, becomes the system of equations
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In this work, we use collision integrals written in the following form:
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middle collision cross section for the i and j particles.
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System (1) consists of two integro-differential equations to solve which we use the method of direct numerical
solution of the kinetic Boltzmann equation (the method is presented in [1] in detail). The sets of velocity-distribution
functions of molecules for both components of the mixture are a result of the solution of system (1). The macropara-
meters — density, temperature, pressure, mass and energy fluxes — and other moments of the distribution function are
determined by integration over the three-dimensional velocity space. In particular, for each of the components we have
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where ux and jx is the velocity and the mass flux in the x direction respectively.
Formulation of the Problem. A scheme of the problem is shown in Fig. 1. The vapor (component a) arrives

from bounding surfaces at the region under study. The space between the surfaces is filled with noncondensable gas
(component b), whose amount remains constant throughout the process.

The distribution functions for molecules leaving the interfaces were prescribed in the form of half-Maxwel-
lians with parameters n and T and a zero transport velocity. For the vapor we have na = na1, T = T1 and n1 = na2,
T = T2 on surfaces 1 and 2 respectively. The quantities na1, na2, T1, and T2 are known. It was assumed that na1 =
2na2 in the calculations. Surfaces 1 and 2 are impermeable to gases; therefore, we determined nb1 and nb2 for x = 0
and x = L from the nonflow conditions. It was assumed that T1(x = 0) C T2(x = L).

At the initial instant of time, the concentration of gas particles was taken to be the same throughout the re-
gion under study and to be nb0 = na2 or nb0 = 0.1na2 and 0.5na2 in different variants of calculation.

A number of computations were carried for mechanically identical molecules: ma = mb and da = db. Thereaf-
ter, the algorithm was modified for arbitrary masses and diameters. We give in the work results of calculations for
ma = 10mb and da = 1.68db (argon–helium mixture) and ma = 0.001mb and da = 0.1db (mixture of vapor molecules
and large particles as the noncondensable component) as an example. To describe the interaction of the mixture com-
ponents a and b we used the model of rigid elastic spheres.

The vapor concentration na2 and the surface temperature T2 were taken as the basic ones in the work.
The problem on recondensation of a vapor in the presence of a noncondensable component was solved for the

Knudsen numbers Kn = 0.5, 0.1, and 0.01. The Kn number is equal to λa2
 ⁄ L, where λa2 is the mean free path of the

vapor with parameters na2 and T2.
Method of Solution. In solving Eqs. (1), we used a numerical procedure involving a conservative finite-dif-

ference approximation of the differential parts of the equations. We prescribed a fixed grid with steps ∆x, ∆t, and ∆ξ
in the five-dimensional phase space (x, t, ξx, ξy, ξz) and replaced the system of equations (1) by a system consisting
of a large number (of the order of several hundred or thousand) of finite-difference equations with a nonlinear right-
hand side. In a one-dimensional formulation for the problem on recondensation of a mixture, they have the form

Fig. 1. Scheme of the problem.
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where k is the cell number in the velocity space.
In solving the system of equations (4), we used the algorithm of splitting by physical processes: molecular

motion without collisions and spatially homogeneous relaxation
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In solving the problem, special emphasis was placed on computation of direct and cross collision integrals.
Fivefold multiple integrals were computed using random cubature formulas with special Korobov distributions [2],
which ensured the accuracy necessary for solution of the problem. For a number of random nodes of the order of
103, the error of computation of the multiple integral amounts to about 3%.

Calculation Results. The results of calculations are given in Figs. 2–7. In all the figures, the concentrations
and the temperatures are given in relation to na2 and T2 respectively. The dimension of the domain under study L is
taken to be unity.

Figure 2 shows the stationary dependences of the concentrations and temperatures of the vapor and the gas on
x for Kn = 0.1 with nb0

 ⁄ na2 = 0.5 and 1.0 for mechanically identical molecules. It is seen that the dimensionless con-

Fig. 2. Concentrations (a) and temperatures (b) of the vapor and the gas vs. x
for Kn = 0.1 when nb0

 ⁄ na2 = 0.5 (I) and 1.0 (II).

Fig. 3. Concentrations (a) and temperatures (b) of the vapor and the gas vs. x
for Kn = 0.01 (I) and 0.1 (II) when nb0

 ⁄ na2 = 0.5.
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centration of the vapor changes from a value of D1.83 near interface 1 to a value of D1.18 near phase boundary 2. A
twofold increase in the initial concentration of the gas exerts no substantial influence on na as a function of the coor-
dinate. In the process of interpenetration of the components, the mass of the gas is redistributed in the space under
study so that its concentration near phase boundary 2 is more than twice as high as the concentration near interface 1.

Figure 3 illustrates the influence of the Knudsen number on the concentration and temperature distributions
of the components of the mixture in the domain under study. The results of calculations are given for Kn = 0.01
and 0.1 when nb0

 ⁄ na2 = 0.5. The molecules are mechanically identical. It follows from the figure that the curvature
of the na(x) and nb(x) lines increases as the state of the mixture approaches the limit of a continuous medium (Kn =
0.01), and the concentration near the interfaces is closer to na1 and na2 respectively.

In the following step of investigation, we solved a number of problems on recondensation of the vapor in the
presence of a noncondensable gas in the case where the masses of the mixture components and the molecular diame-
ters were different (Figs. 4–6).

Figure 4 gives the dependences of the concentrations and temperatures of the vapor and the gas on x for
Kn = 0.1 when nb0

 ⁄ na2 = 0.5 and 1.0. In these calculations, the masses and molecular diameters of the components
correspond to the argon (vapor)–helium (gas) mixture: ma = 10mb and da = 1.68db. Figure 5 shows the dependence
of the concentration of the mixture components and of the temperature on x for Kn = 0.1 and nb0

 ⁄ na2 = 1.0 for the
case of mechanically identical molecules ma = mb, and da = db, and the argon–helium mixture: ma = 10mb and da =
1.68db. The observed behavior of the concentrations and the temperatures is similar, in principle, to the case ma =
mb and da = db (Fig. 2).

A change in the vapor velocity along x is presented in Fig. 6 for mechanically identical molecules (Fig. 6a)
and the argon–helium mixture (Fig. 6b) when nb0

 ⁄ na2 = 0.5 and nb0
 ⁄ na2 = 1.0. In this figure, the velocity is given in

Fig. 4. Concentrations (a) and temperatures (b) of the vapor and the gas vs. x
for Kn = 0.1 when nb0

 ⁄ na2 = 0.5 (I) and 1.0 (II), ma = 10mb, and da =
1.68db.

Fig. 5. Concentrations (a) and temperatures (b) of the vapor and the gas vs. x
for Kn = 0.1 when nb0

 ⁄ na2 = 1.0, ma = mb and da = db (I) and ma = 10mb
and da = 1.68db (II).
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dimensionless form u/√RaT2 , where Ra is the individual gas constant for the vapor and T2 is the temperature of sur-
face 2. Unlike the concentration and the temperature, the velocity u substantially depends on both the quantity nb0 and
the relation of the masses and diameters of the mixture components. A twofold increase in the concentration of the
noncondensable gas leads to a reduction of approximately 1.4 times in the velocity of flow of the vapor in both cases.
Also, it is noteworthy that when ma = 10mb and da = 1.68db the average velocity of the vapor flow turns out to be
approximately 1.5 times higher than that for mechanically identical molecules. Since the concentrations for these types
of mixtures are similar (Fig. 5), the significant growth in the velocity means a substantial increase in the mass of the
vapor flow through the domain under study.

Subsequently, the algorithm used in the work was applied to solution of the problem on flow of a mixture
with strongly differing masses and diameters for the components: ma = 0.001mb and da = 0.1db. Figure 7 shows the
dependences of the concentration of the mixture components and the temperature on x for Kn = 0.1 when nb0

 ⁄ na2 =
0.1. Here the heavy component acts as noncondensable gas b and the light component acts as vapor a. As is seen in
Fig. 7, the vapor arriving at the domain activates particles exceeding one thousand times its molecules in mass, which
finally becomes responsible for their redistribution in space. The concentration of heavy component b near interface 1
is approximately 1.4 times lower than that near interface 2.

Comparison of the Data of Other Authors. In the work presented, we compared the results obtained to the
data of [3] (Fig. 8).

To solve the problem on recondensation of the vapor in the presence of a noncondensable gas Aoki et al. [3]
adapted the Bird method of Monte Carlo direct statistical simulation presented, for example, in [4].

The main idea of the method is as follows. The gas is simulated by a set of a rather large (but finite) number
of particles that behave in accordance with the hypotheses of kinetic theory. Tracking the evolution of the entire en-
semble of particles in the volume, one may compute the average macroscopic quantities and the distribution function
if necessary.

In each time step, the process of evolution is split into two steps: (1) free separation with the corresponding
boundary conditions and (2) collision relaxation.

Fig. 6. Vapor velocity vs. x for Kn = 0.1 when nb0
 ⁄ na2 = 0.5 (I) and 1.0 (II),

ma = mb and da = db (a) and ma = 10mb and da = 1.68db (b).

Fig. 7. Concentrations of the mixture components (a and b) and temperature
(c) vs. x for Kn = 0.1 when nb0

 ⁄ na2 = 0.1, ma = 0.001mb, and da = 0.1db.
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Realization of the first step presents no fundamental difficulties: all the molecules are shifted in accordance
with their velocities and interact with the boundaries of the domain if necessary.

Fundamental is the second step, on whose successful realization the success of the method depends.
Superficially the principle of splitting is the same as that in the corresponding scheme of solution of the

Boltzmann equation. The step of free movements simply coincides if we have in mind that the velocities are random
and not fixed in statistical simulation. The relaxation step in [3] is implemented differently than in the method used
by the authors of the present work. Nonetheless, Fig. 8 shows good agreement of the results obtained by these differ-
ent methods for the present class of problems.

The authors have been unable to find works where the problem on recondensation of the vapor in the pres-
ence of a noncondensable gas would be solved for molecules of different masses and diameters.

CONCLUSIONS

1. The results of solution of the problems for mechanically identical molecules, which have been obtained by
two different methods in a wide range of Knudsen numbers, are in good agreement.

2. The algorithm developed enables one to calculate the processes of recondensation in the presence of a gas
whose molecules significantly differ from the vapor molecules in mass and diameter, with no limitations being im-
posed on the concentration of the components.

3. The calculation results presented for the mixture with a large ratio of masses and diameters for different
components (1000 and 10 respectively) enable one to evaluate their mutual influence and to determine the density and
temperature distributions in recondensation.

This work was carried out with financial support from the Russian Foundation for Basic Research, project No.
04-02-16449, the Ministry of Education of the Russian Federation, project No. PD02-2.6-60, and partially from the
funds of the President of the Russian Federation in support of leading scientific schools, grant NSh-1517.2003.8.

Fig. 8. Comparison of the results obtained by the authors for Kn = 0.1 (a and
c) and 0.01 (b and d) (curves) to the data of [3] (points) when nb0

 ⁄ na2 = 0.5
for the concentrations (a and b) and temperatures (c and d) of the vapor and
the gas.
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NOTATION

da, diameter of a molecule of component a; db, diameter of a molecule of component b; fa(r, t, ξa), velocity-
distribution function of molecules for the vapor; fb(r, t, ξb), velocity-distribution function of molecules for the gas;
Jaa, collision integral describing the interaction of vapor molecules with each other; Jab, collision integral describing
the interaction of vapor molecules and gas molecules; Jbb, collision integral describing the interaction of gas molecules
with each other; Jba, collision integral describing the interaction of gas molecules and vapor molecules; j, mass-flux
density; Kn, Knudsen number; L, dimension of the domain under study; ma, mass of a molecule of component a;
mb, mass of a molecule of component b; n, concentration; r(x, y, z), Cartesian coordinates; t, time; T, temperature; u,
mass-flux velocity; θ and ε, angular parameters of collision; λ0, mean free path of component a; ξa, molecular velocity
for component a; ξb, molecular velocity for component b.
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